Enrollment No: _

Exam Seat No:

C. U. SHAH UNIVERSITY

Summer Examination-2022

Subject Name: Engineering Mathematics - 3

Subject Code: 4TE03EMT2 Branch: B.Tech (All)

Semester: 3 Date: 21/04/2022 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 **Attempt the following questions:**

(14)

- a) If f(-x) = -f(x) then f is (a) Even function (b) Odd function (c) Both a and b (d) None of these
- **b)** If the function f(x) is even then which of the following is zero? $(a)a_0$ $(b)a_n$ $(c)b_n$ (d) Both a and b
- c) $L(\sin at) = \underline{\hspace{1cm}}$
 - (a) $\frac{a}{s^2 + a^2}$ (b) $\frac{s}{s^2 + a^2}$ (c) $\frac{(-s)}{s^2 + a^2}$ (d) $\frac{a}{s^2 + a^2}$
- **d**) Find the $L(t^4)$
 - (a) $\frac{24}{s^4}$ (b) $\frac{24}{s^5}$ (c) $\frac{16}{s^4}$ (d) $\frac{16}{s^5}$
- e) If f(D)y = X is given linear differential equation then its general solution is .
 - (a) y(x) = C.F + P.I
- (b) Solution of f(D) = 0

(c) y(x) = P.I

- (d) None of these
- f) Solution of $(D^2 1)y = 0$ is

(a)
$$y = (c_1 + c_2)e^x$$

(b)
$$(c_1 + c_2 x)e^x + (c_1 + c_2 x)e^{-x}$$

(a)
$$y = (c_1 + c_2)e^x$$

(c) $y = (c_1 + c_2x)e^x$

(d)
$$y = c_1 e^{-x} + c_2 e^{x}$$

- Find the degree of a given differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right) + y = 0$ g) (d)
- **h**) $L^{-1}\left\{\frac{1}{s^2+a^2}\right\} = \underline{\hspace{1cm}}$.
- - (a) $\frac{1}{a}cosat$ (b) $\frac{1}{a^2}sinat$ (c) $\frac{1}{a}sinat$ (d) $\frac{1}{a^2}cosat$
- i) Which of the following is the partial differential equation of z = ax + by + ab by eliminating arbitrary constant.
- (a)z = px + qy + pq(b)z = pz qy + pq(c)z = px + qy pq(d) z = px qy pq

(c) $\phi_1(y-2x) + \phi_2(y+x)$ (d) $\phi_1(y-2x) + \phi_2(y+2x)$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)a) Find the root of the equation $x^3 - 2x - 5 = 0$ by method of false (05)position correct to three decimal places **b)** Find the root of the equation $x^3 - x - 11 = 0$ correct to three decimal (05)using bisection method. (04)c) Evaluate $\sqrt{15}$ correct to three decimal places using Newton-Raphson method. Q-3 Attempt all questions (14)a) Expand $f(x) = x \sin x$ in a Fourier series in the interval $0 \le x \le 2\pi$. (07)**b)** Express $f(x) = e^{ax}$ as a Fourier series in the interval $-\pi < x < \pi$. (05)c) Write down general form of linear differential equation in higher order. (02)**Q-4** Attempt all questions **(14)** Find $L\left(\frac{\cos 2t - \cos 3t}{t}\right)$ (05)**b)** Find $L(t \cdot e^{2t} \cos 3t)$ (05)c) Find $L(e^{4t} \sin 2t \cos t)$ (04)Q-5 **Attempt all questions (14)** a) Solve the equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x \cdot e^{9x}$ (06)**b**) Solve: $(D^2 - 7D + 10)y = 5x + 7$ (05)

a) Find inverse Laplace transform by using convolution theorem

c) State Dirichlet's condition for Fourier series.

Attempt all questions

Q-6

(03)

(14)

(05)

$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$$
b) If $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$ (05)

Then show that $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left(\frac{\cos 2x}{1^2} + \frac{\cos 6x}{3^2} + \frac{\cos 10x}{5^2} + \cdots \right)$

- c) Solve $\frac{d^2y}{dx^2} + 10\frac{dy}{dx} + 25y = 0$ (04)
- Attempt all questions Q-7 (14)
 - a) Solve the given differential equation by using Laplace transform y" + 2y" y' 2y = 0, y(0) = y'(0) = 0, y"(0) = 6.
 b) Express f(x) = x + x² as a Fourier series with period 2 in the range **(07)**
 - (07)-1 < x < 1.
- Attempt all questions (14)Q-8
 - a) Solve $\frac{\bar{d}^2y}{dx^2} + 4y = tan2x$ by using method of variation parameters. (07)
 - b) Solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given $u(x, 0) = 6 e^{-3x}$. (07)

